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ABSTRACT 

Results of Schoenberg and others on limits of periodic splines as their order, m, 
goes to infinity are extended to sequences of D=-splines determined by the 
powers of an unbounded  non-negative self-adjoint operator  D on a Hilbert 
space, H, and an evaluation map L from H to R". All such limits lie in the lowest 
frequency n-dimensional  invariant subspace for D, T*~. When  each term in the 
sequence is the D m-spline whose image under  L matches a fixed vector, y, (an 
L-interpolant),  then the limit is the L-interpolant  to y from T,*, When  the terms 
are smoothing splines derived from y then the limit exists when the smoothing 
parameter  goes to 0 as t m If t is not an eigenvatue, ~ ,  of D, the limit is the 
L-least squares best fit to y from T*,, l = card {j : aj < t}. 

1. Introduction 

This paper provides an operator theoretic version of some results of Schoen- 

berg, Golitschek, Cavaretta and Newman, and Ragozin [4,2, 1,3], on the 
limiting behavior of interpolating or smoothing splines as the degree tends to 

infinity. Our basic setting consists of: 

(1.1) 
(i) An abstract (real) Hilbert space, H. 
(ii) A non-negative unbounded self-adjoint operator D on H with finite 

dimensional spectral projections. 
(iii) An unbounded linear map L from H onto  R" with component functionals 
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Associated with H, D, L, are the family of Hilbert spaces 

rim:= Dom(Dm:-b, with semi-norm I h I,.: = II D"":h II 
(I .2) 

( = <h, D " h )  w, h E Dom(D ' ) ) .  

We assume that there exists an mo such that L is defined on H'", for m >= m,,, and 

is continuous with respect to the norm 

II h H,,: = (I h I~, + 11 h I1-') '/-~ 

on H". In everything that follows we shall always assume m _-> m.. From l.l(ii) it 

follows that the eigenvalues of D form an increasing sequence. We let 

(1.3) Spec(D) = {a. _<- a_~ <= ...}, 

and we also assume that L continues to have maximal rank when restricted to 

any of the D-invariant spaces 

(1.4) Tk: = h E H : h  = flihi, Dhi = aihi 
i=1  

of D-polynomials of degree at most k. Moreover, we assume 

(I.5) dim ker(D) =< n. 

Our main object is to determine the limiting behavior of certain sequences of 

2m' th  order DL-splines as m tends to infinity. The space of 2m' th  order 

DL-splines is defined by 

(1.6) S"(D,  L): = {h E Dom(D"/2): for some y in R",h = ar~min [g [], }. 

It follows from our assumptions that L restricted to S ' ( D ,  L) is invertible (see 

2.2), so we can define the 2m' th  orderspline interpolant to y in R", denoted S,,.,. y, 

by 

(1.7) 

S,,,,,,y = h E S"(D,  L), if and only if Lh = y 

(if and only if h = argmin Ig f~,). 
Lg - y  

We intend to show that lim,.~+ So.,, y always exists and to characterize this limit 

as an L-interpolant to y from the n ' th degree D-polynomials, T,,  i.e. a t E T ,  with 

Lt  = y .  If o~, = a,+~, so d i m T , > n ,  there are many interpolants. To obtain a 

precise value for limm-~So.,,y we must restrict T, to the n-dimensional subspace, 

T*,, whose members are characterized by the fact that their components 

belonging to the eigenvalue o~, are orthogonal to ker(L). 
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More generally, we shall examine the limits as m - + ~  of the smoothing 

DL-spline sequences S ........ y, where S ..... y is defined by 

(1.8) S ..... y = argmin ~ (y~- l,(g))~+ A lgl],,. 
g E H  "~ i = 1  

Under the assumptions we have made it will follow that SA.,,,y E S " ( D , L ) .  We 

shall show that lira . . . .  S~ ...... y exists for all y E R "  if and only if lim,,_~A,.a~" = 

d(j) exists in the extended half-line [0, ac] for all integral j with 1 =<j=< n. 

Moreover, when / = m a x { j _ -  < n : d ( j ) < ~ } ,  lim ..... S~ ...... y is a D-polynomial of 

degree l, which can be characterized, when d(l) = 0, as the L-least squares best 

fit to y from TI, i.e. the tETI which minimizes ~'7=, (y~ - l~ (t)):. 

A number of settings in which our assumptions hold are easily described. The 

simplest is H =  L2([0, 1]), the 1-periodic L~ functions, with D = -d2/dt: and 

Lf = [f(x~)], the evaluation mapping on the set A = {0< xt < . . .  < x, =< 1}. For 

this example what follows just recovers the work in [3]. H'" is the standard 

periodic Sobolev space, and the 2m' th  order DL-splines are just the usual 

periodic polynomial splines of order 2m. This example has dictated our choice of 

nomenclature for the general case. Other choices for L lead to more exotic 

spaces of periodic splines. 

The simplest generalizations of the preceding example are the multipli- 

periodic splines on R k. These arise when H = L~([0, 1]k), the multipli-periodic 

functions on [0, 1] k with D = - 2~=, O;/Ot~ and L f  = [f(xi)] the evaluation map 

on a set A = {xj :j  = 1 . . . . .  n}. The points in A must be restricted by some general 

position requirements for the maximal rank assumption, 1.4, to hold. Again the 

spaces I-I" are periodic Sobolev spaces, and the T~ are spaces of trigonometric 

polynomials. 

A vast collection of generalizations are provided by letting H be the L2 space 

of any compact Riemannian manifold, M, without boundary, with D the 

negative of the Laplace-Bettrami operator  on M. L can be an evaluation map, 

provided the points are in general position with respect to the first n eigenfunc- 

tions for D. One simple case is when M is the k-sphere, S k. Then the spaces Tk 

are spaces of generalized spherical harmonics, but the 2m' th  order DL-splines 

are difficult to describe explicitly in this case, since they involve fundamental 

solutions for D"  which cannot be given in a simple closed form. (See [5].) 

2. Interpolating and smoothing DL-splines 

Our development requires a few basic facts about DL-splines. We need to 

show that our assumptions on D, L, and T,  are enough to recover most of the 

standard facts about interpolating and smoothing splines. 
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Our first goal is to show that interpolating DL-splines always exist and are 

unique. A useful result toward this goal is 

LEMMA 2.1. Given y in H, if h = argminL~=y [g [~, then D~/Zh ± ker(L) n H". 

PROOF. From the minimization property of h it follows that I h + tg 1~ >= [h ]~ 
for all t E R if Lg = 0. So standard Hilbert space minimization arguments imply 

(D~/2h, Dm/2g) = 0 for all such g. • 

Now we can prove 

THEOREM 2.2. Suppose the Hilbert space H and the (unbounded) operators 
D,L  satisfy the assumptions in section 1, in particular (1.5). Then 
L: S m (D, L)---> R" is invertible, i.e. 

(2.3) For all y in R n, there exists a unique h @ H" which solves h = ar~min I g I~. 

PROOF. One of the assumptions in Section 1, 1.4, was that L has maximal 

rank on the D-invariant space T,.  But T, is included in H", so L has rank n on 

H". Hence the hyperplane {g E H m : Lg = y} is non-empty. Now standard theory 

shows that the weakly lower semi-continuous convex function [g 12,, attains its 

in]imum on this hyperplane since it is bounded below. 

To show that the minimum is attained at exactly one point, suppose h i  and h2 

are both minimizers. Then L(hl - h2) = 0 so 2.1 shows (D"/2h~, Dm/2(hl - h2)) = O. 
Hence (Dm/2(h~ - h2), Dm/2(hl - h2) )  = 0 ,  and thus 

hi - h2 E ker(D m/2) n ker(L) = ker(D) n ker(L). 

But either ker(D) = {0} or 0 is the smallest eigenvalue of D and ker(D) = T1. In 

the first case ker (D)nker (L)=  {0}, while in the second case the maximal rank 

assumption on L also implies that intersection is zero since dim ker(D) =< n by 

1.5. Hence hi = h2 holds in either case. • 

COROLLARY 2.4. Sm (D, L) = ker(L) ±m where lm means the orthogonal com- 

plement with respect to the semi-inner product (D"/2h, Dm/2g) on H "~. 

PROOF. The inclusion S"  (D, L) C_ ker(L) lm is just 2.1. In the opposite 

direction if h ~ ker(L) lm then the existence of the DL-spline interpolant S0.mLh 

and 2.1 imply h - So.,,Lh E k e r ( L f  ~ n ker(L). So h - So,,,Lh E ker(D m~2) C 

S '~ (D, L). From this the containment S " (D, L) ~ ker(L) ±m follows. • 

Our second goal is to show that the minimization problem in 1.8 has a unique 

solution which is a DL-spline. 
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PROPOSITION 2.5. For any A > 0 and any y ~ R" there exists a unique h C H" 

with 

(2.6) h = argmin 2 (Y' - l, (g))~- + A I g I~,. 
g E H  m i ~ l  

That h is in S m (D, L). 

PROOF. The existence of solutions to the minimization problem inherent in 

2.6 follows just as in 2.3 since the function being minimized is lower semi- 

continuous, convex, and bounded below. Moreover, any solution, h, to this 

quadratic minimization problem must satisfy 

O = 2 ( y i - l , ( h ) ) l , ( g ) - A ( D " / 2 h ,  Dm/Zg), a l l g @ H  ~ 
i = 1  

by standard orthogonality arguments. When g is restricted to ker(L) the first sum 

is zero and this equation implies h E ker(L) ira. Hence any solution is in S " (D, L) 

by 2.4. 
The uniqueness of the solution h can be seen in the following way. Both 

summands in the expression being minimized are convex in g and the first 

summand is strictly convex as a function of Lg. Hence any two solutions would 

have the same values for Lg. But since they would both be DL-splines, they must 

be the same by the uniqueness of interpolating DL-splines, 2.3. • 

3. Limit theorems for interpolating and smoothing DL-splines 

This section contains the statement and proofs of our main results. We closely 

parallel the proofs for periodic splines [3] and begin by showing that any limit of 

S~.,,y must be in the space T,  of D-polynomials of degree n. When a,  = a,+, the 

highest frequency term of this limit must have a special form. These results allow 

us to reduce our work to a question about finite dimensional spaces, whose 

resolution leads to the main theorem. 
We assume that the data vector y is fixed and that the splines S . . . .  y are defined 

by 1.7 if h,, = 0 or by 1.8 otherwise. Let us decompose S~m,my according to the 

eigenbasis for D as 

(3.1) S~m,,,y =tm + rm, tm ~ T,,  r,. ET,  ~. 

Our first step in studying the convergence of S~m,,,y will be to show that Dkr,, 

converges to zero, no matter what A,,'s are chosen. The key to this is the fact that 

if So is any T, interpolant for y (of course such So exist by the rank assumption at 

t.4), then 

(3.2) I S~,my [L =< [So [~,. 
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This follows from the minimizing proper ty  of the DL-spline interpolant  if h,,, = (I 

or, when 3.,. > 0 ,  from the fact that the minimization proper ty  of S ........ y in 1.8 

shows 

h ISA.,..,y[~,_-- < ~ lY~ - lk (S~,,,.,,,y)lZ + h r S ........ yl~,, 
k = l  

(3.3) =< Z l Yk - + Is,, 

= I s,,l o. 

Now the desired convergence  of r,~ is a consequence  of 

PROPOSITION 3.4. Suppose  gm is a n y  sequence  with g,. in H ''~ a n d  suppose  there 

exists  so in T .  with l gin [~ <-- [ so I~ for all m. I f  g,. = tm+ r~, as in 3.1, then for  each  

k, I rm ]k = (r~, D kr., ) ~/2--~ O as m --~ ~.  H e n c e  any  l imit  poin t  o f  {g,.} lies i n T . .  

PROOF. First note  that the remainder  terms, rm, are in H '° since r,. = g., - t., 

and the D-polynomial  t~ is in H ~. Hence  if we let 

( 3 . 5 )  ~ .  + = min {ai : a~ > a .  } 

then the D-eigenbasis expansion of g,. leads to 

(r,., D~r,. ) _-< (r,., D ~ " D"r, .  ) _-< a ko~" (r,., D"rm ) 

<= ak.+m(&., D"g, . )  --<_ a k.+"(s,,, D"so). 

But s,, is in T .  so 

(r . , ,Dkro,)< k ,. ,. (s,,.  s,,). 

i.e. I rm ]k --> 0 at the rate ( a ° l a .+)  "/2. • 

A slight ref inement  of this result applied to the sequence S~m.,.y follows from 

the fact that then each g., is a DL-spline.  Specifically, if a .  = a..~ then 

dim T , ,>n .  so L restricted to T .  has a non-trivial kernel.  We let 

Z .  = ker(L) N T.  

deno te  the n'th degree  D-polynomials  vanishing at each li. Each z in Z .  can be 

wri t ten in the form 

(3.6) z = z .  + p, with D z .  = a . z , ,  p lower f requency .  

( " L o w e r  f r equency"  means  any e igenvector  occurring in p belongs to an 
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eigenvalue less than a,.)  Let the L-proximal k ' th  degree D-polynomials be the 

se t  

(3.7) T~ = {tk C T~: (tk. z,, ) = 0, for all z, as in 3.6}. 

Then any limit of S ........ y lies in T,*, as a result of 

PROPOSITION 3.8. For each m. let g,,, be a DL-spline and suppose the sequence 

{g,,,} satisfies the hypotheses of Proposition 3.4. Then 

!!m (g,,,, z,, ) = O, for any z,, as in (3.6). 

PROOF. Since Lz = 0. for any z in Z. ,  2.4 says 0 = (D'"/'-g,,,, D"/'-z). So, from 

3.6, we have 

0 = (g,,,. D"'z,,) + (g,., D'"p) = c~',','(g,,,, z,,) + (g,., D"'p). 

Now since p has lower frequency than z.,  it involves eigenvectors associated 

with eigenvalues which are no larger than 

a.  = max{cei :ai < a.}. 

Thus the bound ]g., I~,,--< Is,,t~,,, the fact that s{, E T. ,  and the Cauchy-Schwarz 

inequality can be applied to obtain 

~',:'l(g,., z,.)]--(g,,,,D'"p) <- Ig,. I,,, IP I,,, 

<-<-Is,,I,,,aU'~(P.P) '/'- <= ~::":lls,,ll~Ullp I]. 

So 

I(gm, z.)l <--(~./~.)'""lls,,llllpll 

and (g,.. z.)---~ 0 at a rate less than or equal to (as la,,) "/-'. 

Now we can examine the convergence properties of S ..... y as m goes to 

infinity. From the preceding two propositions any limit point of this sequence of 

splines must belong to the space T*. CT. .  Since T* is D-invariant, we can find a 

D-eigenbasis {ej} for T*.. Our assumptions imply that we can order the {ej} so that 

Dej = a~ej. (Note that the subset T* CT.  is defined via conditions which only 

affect the eigenfunctions associated with a . . )  We shall refer to this basis as the 

L-proximal  Fourier basis and we define the L-proximal  Fourier coefficients of 

S,,,. y by 

c j (A ,m)=(S~ ,~y ,  ej), l<=j<-n. 
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Let 

Rm = S~.my - ~ cj (A, m)e~ 
j=l  

be the modified remainder. Then 3.2, 3.4 and 3.8 imply that lira . . . .  DkRm = O, 
for all k. Thus any convergence of S ...... y will be completely determined by the 

convergence of the coefficients cj (Am, m). 

A useful expression relating these coefficients for S~m,my and the data y can be 

derived from the orthogonality conditions which follow from the minimization 

property 1.8 used to define S~.,,y. Specifically we must have 

lk (ej)(yk - lk (SA,my)) = A (D"/2ej, D"nS~,my) 
k - I  

(3.9) = A (Dine,, S~.my) = Aa ~cj (A, m ). 

Note that this equation also holds if A = 0. 

We can give this last equation a particularly useful expression if we let {f, } be 

the basis for T* dual to {e,} with respect to the discrete inner product 

(f, g)t = ~ lk (f)lk (g). 
k=l  

This is an inner-product on T*, since ker(L) N T* -- {0}, which follows from 1.8 

and the definition 3.7 of T*. Now the coefficients have the representation 

q(A,m)=(f~,~ci(A,m)e~),=, L =(~,S~.my-Rm)~. 

So 3.9 can be rewritten as 

(3.10) (Lej,y)Ro = (ej,S~.,~y)L + AaT'(fj, S~.my- R,~ )L. 

If we introduce the matrices 

E = [l, (e,)] ,  F = [/, (~)], D,.  (A)  = d iag (Aa~ ' )  

then we can summarize the equations in 3.10 as 

(3.11) E*y=E*LS~,my+Dm(A)F*LS~,my-Dm(A)F*LRm. 

Since {~} is dual to {ej}, F = (E*) -~, and an alternative summary is 

y = (I + FD,, (A)F*)LS~.,.y - FD,, (A)F*LRm. 

Or "solving" for LSA,,,y 

(3.12) LSA,,,y = (I + FDm (A)F*)-ly + (I + FD,, (A)F*)-~FDm (A)F*(LRm ). 
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From these relationships we can see that the limiting behavior of S~,,,my is 

related to the limiting behavior of the positive definite matrices I + FDm (A)F* 

and their inverses. Specifically we have 

LEMMA 3.13. The limit as m ~ oc o f  S,.,.my exists for each y if and only if 
l i m , , ~ ( I  + FDm (Am)F*) ' exists. 

PROOF. Just as in 2.13 in [3]. The key ideas are that S,,..,,,y converges if and 

only if LS~,,,.,.y converges and the coefficient of LR,. in 3.12 is a positive definite 

matrix which is less than I. • 

Now we recall Proposition 2.14 in [3]. 

PROPOSITION 3.14. f f  E * E  is any positive definite matrix and Dr, = diag(d~4j ) 

is a sequence of non-negative diagonal matrices, then 

lim (E*E  + Din)-' exists if and only if 

for each j. lim dm4j exists in [0, ~]. • 

When we put all these pieces together we get our main result. 

THEOREM 3.15. A non-negative sequence {Am} has the property that for each 

n-vector y the DL-splines S,m.my of order 2m based on y converge as m ~ ~ if 

and only if 

(3.16) ]!~nA,.~'existsin [0,~l, [orallintegersjwithj<=n. 

Whenever Am satisfies 3.16, lim,.~S,m,my= g~ is in T*, the L-proximal 
• m O 0  D-polynomials of degree at most l, where l = max{./:hm,._~ A,.aj < }. I f  d(I) = 

m l 
lim,.~A.,o~t and g~ = Zk=, ckek is the expansion of the limit with respect to the 
L-proximal Fourier basis then the coefficients c~ are determined by the equations 

l 

k~.,=l(Lej,Lek)ck = (Lej,y), aj < a~, 

l 

d(l)c~ + ~ (Lej,Lek)ck = (Let,y), aj = at. 
k - I =  

PROOF• As in Theorem 2.19 of [3] the limm~S,~,~y exists, for all y, if and 

only if the given limits of A,~a~ exist in [0oo] as a result of 3.4, 3.8 and 3.13. The 

fact that the limit is in T* and the equations for the coefficients, ck, of the limit 

follow as in the cited Theorem by passing to the limit in the equations of 3.10, 
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when those  with index j, aj > al (i.e. those  for  which lim . . . . .  a'/'A,,, = ~)  are 

d iv ided  by a'~h. , .  • 

REMARK. Note  that  when ,~,, = 0 for all m, or,  more  genera l ly ,  when d ( l )  = O, 

l =  n, then the equa t ions  for the ck s imply say ( g ~ , e i h  = ( y ,  e j ) t .  These  

d e t e r m i n e  g~ as the (p rox imal )  L - in t e rpo lan t  to y f rom T*,. W h e n  d ( l )  = O, l < n, 

then these  equa t ions  are  the  usual normal  equa t ions  for the L - l e a s t  squares  best  

fit to y f rom the D-po lynomia l s ,  TI. 
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