LIMITS OF GENERALIZED PERIODIC D-SPLINES

BY

DAVID L. RAGOZ1N* *Department of Mathematics, GN-50, University of Washington, Seattle, WA 98195, USA*

ABSTRACT

Results of Schoenberg and others on limits of periodic splines as their order, m, goes to infinity are extended to sequences of D^m -splines determined by the powers of an unbounded non-negative self-adjoint operator D on a Hilbert space, H , and an evaluation map L from H to $Rⁿ$. All such limits lie in the lowest frequency *n*-dimensional invariant subspace for D, T^*_{τ} . When each term in the sequence is the D^m -spline whose image under L matches a fixed vector, y, (an L-interpolant), then the limit is the L-interpolant to y from T_{n}^{*} . When the terms are *smoothing* splines derived from y then the limit exists when the smoothing parameter goes to 0 as t^{-m} . If t is not an eigenvalue, α_i , of D, the limit is the **L**-least squares best fit to y from T_i^* , $l = \text{card } \{j : \alpha_j \leq t\}.$

1. Introduction

This paper provides an operator theoretic version of some results of Schoenberg, Golitschek, Cavaretta and Newman, and Ragozin [4,2, 1,3], on the limiting behavior of interpolating or smoothing splines as the degree tends to infinity. Our basic setting consists of:

(1.1)

(i) An abstract (real) Hilbert space, H.

(ii) A non-negative unbounded self-adjoint operator D on H with *finite dimensional* spectral projections.

(iii) An unbounded linear map L from **H** *onto* **R"** with component functionals l_1, l_2, \ldots, l_n .

* Research supported in part by NSF grant MCS-8308349.

Received November 21, 1983

Associated with H, D, L, are the family of Hilbert spaces

(1.2)
$$
\mathbf{H}^{m} := \text{Dom}(\mathbf{D}^{m/2}), \text{ with semi-norm } |h|_{m} := ||\mathbf{D}^{m/2}h||
$$

$$
= \langle h, \mathbf{D}^{m}h \rangle^{1/2}, h \in \text{Dom}(\mathbf{D}^{m})).
$$

We assume that there exists an m_0 such that **L** is defined on **H**^{*m*}, for $m \ge m_0$, and is continuous with respect to the norm

$$
||h||_m := (||h||_m^2 + ||h||^2)^{1/2}
$$

on H^m. In everything that follows we shall always assume $m \ge m_0$. From 1.1(ii) it follows that the *eigenvalues* of D form an *increasing* sequence. We let

(1.3)
$$
Spec(D) = {\alpha_1 \leq \alpha_2 \leq \cdots},
$$

and we also assume that L continues to have maximal rank when restricted to any of the D-invariant spaces

(1.4)
$$
\mathbf{T}_k := \left\{ h \in \mathbf{H} : h = \sum_{i=1}^k \beta_i h_i, D h_i = \alpha_i h_i \right\}
$$

of *D-polynomials of degree at most k.* Moreover, we assume

$$
(1.5) \t\t\t dim ker(D) \leq n.
$$

Our main object is to determine the limiting behavior of certain sequences of *2m'th order DL-splines* as m tends to infinity. The space of *2m'th order DL-splines* is defined by

$$
(1.6) \quad S^{m}(D,\mathbf{L}) := \left\{ h \in \text{Dom}(D^{m/2}) : \text{for some } y \text{ in } \mathbf{R}^{n}, h = \underset{\mathbf{E}g = \mathbf{y}}{\text{argmin}} |g|_{m}^{2} \right\}.
$$

It follows from our assumptions that L restricted to $S^m(D, L)$ is invertible (see 2.2), so we can define the 2*m'th order spline interpolant* to y in \mathbb{R}^n , denoted $S_{0,m}$ y, by

(1.7)
$$
S_{0,m} y = h \in S^{m}(D, L), \quad \text{if and only if } Lh = y
$$

$$
\text{if and only if } h = \operatorname*{argmin}_{L_g = y} |g|_{m}^{2}.
$$

We intend to show that $\lim_{m\to\infty} S_{0,m}y$ always exists and to characterize this limit as an L-interpolant to y from the *n*'th degree D-polynomials, T_n , i.e. a $t \in T_n$ with Lt = y. If $\alpha_n = \alpha_{n+1}$, so dim $T_n > n$, there are many interpolants. To obtain a precise value for $\lim_{m\to\infty}S_{0,m}y$ we must restrict T_n to the *n*-dimensional subspace, T_n^* , whose members are characterized by the fact that their components belonging to the eigenvalue α_n are orthogonal to ker(L).

More generally, we shall examine the limits as $m \rightarrow \infty$ of the smoothing DL-spline sequences $S_{\lambda_m,m}$ y, where $S_{\lambda_m,n}$ y is defined by

(1.8)
$$
S_{\lambda,m} y = \underset{g \in H^m}{\text{argmin}} \sum_{i=1}^n (y_i - l_i(g))^2 + \lambda |g|_m^2.
$$

Under the assumptions we have made it will follow that $S_{\lambda,m} y \in S^m(D,L)$. We shall show that $\lim_{m\to\infty} S_{\lambda_m,m}$ y exists for all $y \in \mathbb{R}^n$ if and only if $\lim_{m\to\infty} \lambda_m \alpha_j^{2m} =$ $d(j)$ exists in the extended half-line $[0, \infty]$ for all integral j with $1 \leq j \leq n$. Moreover, when $l = \max\{j \leq n : d(j) < \infty\}$, $\lim_{m \to \infty} S_{\lambda_m, m} y$ is a D-polynomial of degree *l*, which can be characterized, when $d(l) = 0$, as the L-least squares best fit to y from \mathbf{T}_i , i.e. the $t \in \mathbf{T}_i$ which minimizes $\sum_{i=1}^n (y_i - l_i(t))^2$.

A number of settings in which our assumptions hold are easily described. The simplest is $H = L_2([0, 1])$, the 1-periodic L_2 functions, with $D = -d^2/dt^2$ and $Lf = [f(x_i)]$, the evaluation mapping on the set $\Delta = \{0 < x_1 < \cdots < x_n \leq 1\}$. For this example what follows just recovers the work in [3]. H^m is the standard periodic Sobolev space, and the 2m'th order DL-splines are just the usual periodic polynomial splines of order $2m$. This example has dictated our choice of nomenclature for the general case. Other choices for L lead to more exotic spaces of periodic splines.

The simplest generalizations of the preceding example are the multipliperiodic splines on \mathbb{R}^k . These arise when $\mathbf{H} = L_2^{\infty}([0, 1]^k)$, the multipli-periodic functions on $[0, 1]^k$ with $D = -\sum_{i=1}^k \frac{\partial^2}{\partial t_i^2}$ and $Lf = [f(x_i)]$ the evaluation map on a set $\Delta = \{x_i : j = 1, ..., n\}$. The points in Δ must be restricted by some general position requirements for the maximal rank assumption, 1.4, to hold. Again the spaces H^m are periodic Sobolev spaces, and the T_k are spaces of trigonometric polynomials.

A vast collection of generalizations are provided by letting H be the L_2 space of any compact Riemannian manifold, M, without boundary, with D the negative of the Laplace-Bettrami operator on M. L can be an evaluation map, provided the points are in general position with respect to the first n eigenfunctions for D. One simple case is when M is the k-sphere, S^k . Then the spaces T_k are spaces of generalized spherical harmonics, but the 2m'th order DL-splines are difficult to describe explicitly in this case, since they involve fundamental solutions for D^m which cannot be given in a simple closed form. (See [5].)

2. Interpolating and smoothing DL-splines

Our development requires a few basic facts about DL-splines. We need to show that our assumptions on D, L, and T_n are enough to recover most of the standard facts about interpolating and smoothing splines.

Our first goal is to show that interpolating DL-splines always exist and are unique. A useful result toward this goal is

LEMMA 2.1. *Given y in* H, if $h = \argmin_{k \in \mathbb{Z}^N} |g|_m^2$, then $D^{m/2}h \perp \text{ker}(L) \cap H^m$.

PROOF. From the minimization property of h it follows that $|h + tg|_{m}^{2} \geq |h|_{m}^{2}$ for all $t \in \mathbb{R}$ if $Lg = 0$. So standard Hilbert space minimization arguments imply $\langle D^{m/2}h, D^{m/2}g \rangle = 0$ for all such g.

Now we can prove

THEOREM 2.2. *Suppose the Hilbert space H and the (unbounded) operators* D,L *satisfy the assumptions in section 1, in particular* (1.5). *Then* $\mathbf{L}: \mathbf{S}^m(\mathbf{D}, \mathbf{L}) \rightarrow \mathbf{R}^n$ *is invertible, i.e.*

(2.3) *For all y in* \mathbb{R}^n , there exists a unique $h \in \mathbb{H}^m$ which solves $h = \underset{\mathbf{e} \in \mathbb{R}^m}{\arg\min} |g|_{m}^2$.

PROOF. One of the assumptions in Section 1, 1.4, was that L has maximal rank on the D-invariant space T_n . But T_n is included in H^m , so L has rank n on **H**^m. Hence the hyperplane $\{g \in \mathbf{H}^m : Lg = y\}$ is non-empty. Now standard theory shows that the weakly lower semi-continuous convex function $|g|_m^2$ attains its *infimum* on this hyperplane since it is bounded below.

To show that the minimum is attained at exactly one point, suppose h_1 and h_2 are both minimizers. Then $L(h_1 - h_2) = 0$ so 2.1 shows $\langle D^{m/2}h_i, D^{m/2}(h_1 - h_2) \rangle = 0$. Hence $\langle D^{m/2}(h_1 - h_2), D^{m/2}(h_1 - h_2) \rangle = 0$, and thus

$$
h_1-h_2\in \ker(D^{m/2})\cap \ker(L)=\ker(D)\cap \ker(L).
$$

But either ker(D) = {0} or 0 is the smallest eigenvalue of D and ker(D) = T_1 . In the first case ker(D) \cap ker(L) = {0}, while in the second case the maximal rank assumption on **L** also implies that intersection is zero since dim ker(D) $\leq n$ by 1.5. Hence $h_1 = h_2$ holds in either case.

COROLLARY 2.4. $S^{m}(D, L) = \text{ker}(L)^{\perp_m}$ where \perp_m means the orthogonal com*plement with respect to the semi-inner product* $\langle D^{m/2}h, D^{m/2}g \rangle$ on H^m .

PROOF. The inclusion $S^m(D,L) \subseteq \text{ker}(L)^{L_m}$ is just 2.1. In the opposite direction if $h \in \text{ker}(L)^{m}$ then the existence of the DL-spline interpolant $S_{0,m} L h$ and 2.1 imply $h - S_{0,m} L h \in \text{ker}(L)^{\perp_m} \cap \text{ker}(L)$. So $h - S_{0,m} L h \in \text{ker}(D^{m/2}) \subseteq$ $S^m(D, L)$. From this the containment $S^m(D, L) \supseteq \text{ker}(L)^{\perp_m}$ follows.

Our second goal is to show that the minimization problem in 1.8 has a unique solution which is a DL-spline.

PROPOSITION 2.5. *For any* $\lambda > 0$ *and any* $y \in \mathbb{R}^n$ *there exists a unique* $h \in \mathbf{H}^m$ *with*

(2.6)
$$
h = \underset{g \in H^m}{\text{argmin}} \sum_{i=1}^n (y_i - l_i(g))^2 + \lambda |g|_m^2.
$$

That h is in $S^m(D,L)$.

PROOF. The existence of solutions to the minimization problem inherent in 2.6 follows just as in 2.3 since the function being minimized is lower semicontinuous, convex, and bounded below. Moreover, any solution, h , to this quadratic minimization problem must satisfy

$$
0=\sum_{i=1}^n\left(y_i-l_i\left(h\right)\right)l_i\left(g\right)-\lambda\left\langle D^{m/2}h,D^{m/2}g\right\rangle,\qquad all\ g\in\mathbf{H}^m
$$

by standard orthogonality arguments. When g is restricted to ker(L) the first sum is zero and this equation implies $h \in \text{ker}(L)^{m}$. Hence any solution is in $S^{m}(D, L)$ by 2.4.

The uniqueness of the solution h can be seen in the following way. Both summands in the expression being minimized are convex in g and the first summand is strictly convex as a function of Lg. Hence any two solutions would have the same values for Lg. But since they would both be DL-splines, they must be the same by the uniqueness of interpolating DL-splines, 2.3. •

3. Limit theorems for interpolating and smoothing DL-splines

This section contains the statement and proofs of our main results. We closely parallel the proofs for periodic splines [3] and begin by showing that any limit of $S_{\lambda,m}$ y must be in the space T_n of D-polynomials of degree n. When $\alpha_n = \alpha_{n+1}$ the highest frequency term of this limit must have a special form. These results allow us to reduce our work to a question about finite dimensional spaces, whose resolution leads to the main theorem.

We assume that the data vector y is fixed and that the splines $S_{\lambda_m,m}$ are defined by 1.7 if $\lambda_m = 0$ or by 1.8 otherwise. Let us decompose $S_{\lambda_m,m}$ y according to the eigenbasis for D as

$$
\text{(3.1)} \quad S_{\lambda_m,m} \mathbf{y} = t_m + r_m, \quad t_m \in \mathbf{T}_n, \quad r_m \in \mathbf{T}_n^{\perp}.
$$

Our first step in studying the convergence of $S_{\lambda_m,m}$ will be to show that $D^k r_m$ converges to zero, no matter what λ_m 's are chosen. The key to this is the fact that if s_0 is any T_n interpolant for y (of course such s_0 exist by the rank assumption at 1.4), then

$$
|\mathbf{S}_{\lambda_m,m}\mathbf{y}|_m^2 \leq |s_0|_m^2.
$$

This follows from the minimizing property of the DL-spline interpolant if $\lambda_m = 0$ or, when $\lambda_m > 0$, from the fact that the minimization property of $S_{\lambda_m,m}$ in 1.8 shows

$$
\lambda \left| S_{\lambda_m, m} \mathbf{y} \right|_m^2 \leq \sum_{k=1}^n |y_k - l_k (S_{\lambda_m, m} \mathbf{y})|^2 + \lambda \left| S_{\lambda_m, m} \mathbf{y} \right|_m^2
$$
\n
$$
\leq \sum |y_k - l_k (s_0)|^2 + \lambda \left| s_0 \right|_m^2
$$
\n
$$
= \lambda \left| s_0 \right|_m^2.
$$
\n(3.3)

Now the desired convergence of r_m is a consequence of

PROPOSITION 3.4. *Suppose* g_m *is any sequence with* g_m *in* H^m *and suppose there exists s₀ in* T_n *with* $|g_m|^2 \leq |s_0|^2$ *for all m. If* $g_m = t_m + r_m$, *as in* 3.1, *then for each* $k, |r_m|_k = \langle r_m, D^k r_m \rangle^{1/2} \rightarrow 0$ as $m \rightarrow \infty$. Hence any limit point of $\{g_m\}$ lies in \mathbf{T}_n .

PROOF. First note that the remainder terms, r_m , are in H^m since $r_m = g_m - t_m$ and the D-polynomial t_m is in H^m . Hence if we let

$$
\alpha_{n+} = \min \{ \alpha_i : \alpha_i > \alpha_n \}
$$

then the D-eigenbasis expansion of g_m leads to

$$
\langle r_m, D^k r_m \rangle \leq \langle r_m, D^{k-m} D^m r_m \rangle \leq \alpha_{n+1}^{k-m} \langle r_m, D^m r_m \rangle
$$

$$
\leq \alpha_{n+1}^{k-m} \langle g_m, D^m g_m \rangle \leq \alpha_{n+1}^{k-m} \langle s_0, D^m s_0 \rangle.
$$

But s_0 is in \mathbf{T}_n so

 $\langle r_m, D^k r_m \rangle \leq \alpha_{n+1}^{k-m} \alpha_n^{m} \langle s_0, s_0 \rangle$

i.e. $|r_m|_k \to 0$ at the rate $(\alpha_n/\alpha_{n+1})^{m/2}$.

A slight refinement of this result applied to the sequence $S_{\lambda_m,m}$ follows from the fact that then each g_m is a DL-spline. Specifically, if $\alpha_n = \alpha_{n+1}$ then $\dim T_n > n$, so L restricted to T_n has a non-trivial kernel. We let

$$
Z_n = \ker(\mathbf{L}) \cap \mathbf{T}_n
$$

denote the *n*'th degree D-polynomials vanishing at each l_i . Each z in Z_n can be written in the form

$$
(3.6) \t z = z_n + p, \t with Dz_n = \alpha_n z_n, \t p lower frequency.
$$

("Lower frequency" means any eigenvector occurring in p belongs to an

eigenvalue *less than* α_n .) Let the *L*-proximal k'th degree D-polynomials be the set

$$
(3.7) \hspace{1cm} \mathbf{T}_k^* = \{t_k \in \mathbf{T}_k : \langle t_k, z_n \rangle = 0, \text{ for all } z_n \text{ as in } 3.6\}.
$$

Then any limit of $S_{\lambda_m,m}$ lies in T_n^* as a result of

PROPOSITION 3.8. *For each m. let g_m be a DL-spline and suppose the sequence* {g,,,} *satisfies the hypotheses of Proposition* 3.4. *Then*

$$
\lim_{n \to \infty} \langle g_m, z_n \rangle = 0, \quad \text{for any } z_n \text{ as in (3.6).}
$$

PROOF. Since $Lz = 0$, for any z in Z_n , 2.4 says $0 = \langle D^{m/2}g_m, D^{m/2}z \rangle$. So, from 3.6, we have

$$
0 = \langle g_m, D^m z_n \rangle + \langle g_m, D^m p \rangle = \alpha_n^m \langle g_m, z_n \rangle + \langle g_m, D^m p \rangle.
$$

Now since p has lower frequency than z_n , it involves eigenvectors associated with eigenvalues which are no larger than

$$
\alpha_{n-}=\max{\{\alpha_i:\alpha_i<\alpha_n\}}.
$$

Thus the bound $|g_m|^2_m \leq |s_0|^2_m$, the fact that $s_0 \in \mathbf{T}_n$, and the Cauchy-Schwarz inequality can be applied to obtain

$$
\alpha_n^m |\langle g_m, z_n \rangle| = \langle g_m, D^m p \rangle \leq |g_m|_m |p|_m
$$

$$
\leq |s_0|_m \alpha_{n-}^{m/2} \langle p, p \rangle^{1/2} \leq \alpha_n^{m/2} ||s_0|| \alpha_{n-}^{m/2} ||p||.
$$

So

$$
|\langle g_m, z_n \rangle| \leq (\alpha_n - |\alpha_n|)^{m/2} ||s_0|| ||p||.
$$

and $\langle g_m, z_n \rangle \rightarrow 0$ at a rate less than or equal to $(\alpha_n, \alpha_n)^{m/2}$.

Now we can examine the convergence properties of $S_{\lambda_m,m}$ as m goes to infinity. From the preceding two propositions any limit point of this sequence of splines must belong to the space $T_n^* \subset T_n$. Since T_n^* is D-invariant, we can find a D-eigenbasis $\{e_i\}$ for \mathbf{T}_n^* . Our assumptions imply that we can order the $\{e_i\}$ so that $De_i = \alpha_i e_i$. (Note that the subset $\mathbf{T}_n^* \subset \mathbf{T}_n$ is defined via conditions which only affect the eigenfunctions associated with α_n .) We shall refer to this basis as the *L-proximal Fourier basis* and we define the *L-proximal Fourier coefficients* of $S_{\lambda,m}$ y by

$$
c_j(\lambda, m) = \langle S_{\lambda, m} y, e_j \rangle, \qquad 1 \leq j \leq n.
$$

Let

$$
R_m = S_{\lambda,m} y - \sum_{j=1}^n c_j (\lambda, m) e_j
$$

be the modified remainder. Then 3.2, 3.4 and 3.8 imply that $\lim_{m\to\infty} D^k R_m = 0$, for all k. Thus any convergence of $S_{\lambda_m,m}$ y will be completely determined by the convergence of the coefficients $c_i (\lambda_m, m)$.

A useful expression relating these coefficients for $S_{\lambda_m,m}$ and the data y can be derived from the orthogonality conditions which follow from the minimization property 1.8 used to define $S_{\lambda,m}$ y. Specifically we must have

(3.9)
\n
$$
\sum_{k=1}^{n} l_k(e_j)(y_k - l_k(S_{\lambda,m}y)) = \lambda \langle D^{m/2}e_j, D^{m/2}S_{\lambda,m}y \rangle
$$
\n
$$
= \lambda \langle D^{m}e_j, S_{\lambda,m}y \rangle = \lambda \alpha_j^{m}c_j(\lambda, m).
$$

Note that this equation also holds if $\lambda = 0$.

We can give this last equation a particularly useful expression if we let $\{f_i\}$ be the basis for \mathbf{T}_n^* dual to $\{e_i\}$ with respect to the discrete inner product

$$
\langle f, g \rangle_{L} = \sum_{k=1}^{n} l_{k} (f) l_{k} (g).
$$

This is an inner-product on \mathbf{T}_n^* , since ker(L) \cap $\mathbf{T}_n^* = \{0\}$, which follows from 1.8 and the definition 3.7 of \mathbf{T}_n^* . Now the coefficients have the representation

$$
c_j(\lambda, m) = \left\langle f_j, \sum_{i=1}^n c_i(\lambda, m) e_i \right\rangle_L = \left\langle f_j, S_{\lambda, m} y - R_m \right\rangle_L.
$$

So 3.9 can be rewritten as

$$
(3.10) \qquad \langle \mathbf{L} e_j, \mathbf{y} \rangle_{\mathbf{R}^n} = \langle e_j, S_{\lambda,m} \mathbf{y} \rangle_L + \lambda \alpha_j^m \langle f_j, S_{\lambda,m} \mathbf{y} - R_m \rangle_L.
$$

If we introduce the matrices

$$
E = [l_i(e_j)], \quad F = [l_i(f_j)], \quad D_m(\lambda) = \text{diag}(\lambda \alpha_j^m)
$$

then we can summarize the equations in 3.10 as

$$
(3.11) \tE^*y = E^*LS_{\lambda,m}y + D_m(\lambda)F^*LS_{\lambda,m}y - D_m(\lambda)F^*LR_m.
$$

Since ${f_i}$ is dual to ${e_i}$, $F = (E^*)^{-1}$, and an alternative summary is

$$
\mathbf{y} = (I + FD_m(\lambda)F^*)LS_{\lambda,m}\mathbf{y} - FD_m(\lambda)F^*LR_m.
$$

Or "solving" for $LS_{\lambda,m}y$

$$
(3.12) \qquad LS_{\lambda,m} y = (I + FD_m(\lambda)F^*)^{-1}y + (I + FD_m(\lambda)F^*)^{-1}FD_m(\lambda)F^*(LR_m).
$$

From these relationships we can see that the limiting behavior of $S_{\lambda_m,m}$ is related to the limiting behavior of the positive definite matrices $I + FD_m(\lambda)F^*$ and their inverses. Specifically we have

LEMMA 3.13. *The limit as* $m \rightarrow \infty$ *of* $S_{\lambda_m,m}$ *exists for each y if and only if* $\lim_{m\to\infty} (I + FD_m(\lambda_m)F^*)^{-1}$ *exists.*

PROOF. Just as in 2.13 in [3]. The key ideas are that $S_{\lambda_m,m}$ converges if and only if $LS_{\lambda_m,m}$ y converges and the coefficient of LR_m in 3.12 is a positive definite matrix which is less than I .

Now we recall Proposition 2.14 in [3].

PROPOSITION 3.14. *If* E^*E is any positive definite matrix and $D_m = \text{diag}(d_{\hat{m},ji})$ *is a sequence of non-negative diagonal matrices, then*

$$
\lim_{m \to \infty} (E^*E + D_m)^{-1} \text{ exists if and only if}
$$

for each j,
$$
\lim_{m \to \infty} d_{m,ij} \text{ exists in } [0, \infty].
$$

When we put all these pieces together we get our main result.

THEOREM 3.15. A non-negative sequence $\{\lambda_m\}$ has the property that for each *n*-vector y the DL-splines $S_{\lambda_m,m}$ of order 2m based on y converge as $m \rightarrow \infty$ if *and only if*

$$
(3.16) \qquad \lim_{m \to \infty} \lambda_m \alpha_j^m \text{ exists in } [0, \infty], \quad \text{for all integers } j \text{ with } j \leq n.
$$

Whenever λ_m satisfies 3.16, $\lim_{m\to\infty} S_{\lambda_m,m}y = g_{\infty}$ is in T^* , the L-proximal *D-polynomials of degree at most l, where* $l = \max\{j : \lim_{m \to \infty} \lambda_m \alpha_j^m < \infty\}$ *. If* $d(l) =$ $\lim_{m\to\infty}\lambda_m\alpha_l^m$ and $g_{\infty}=\sum_{k=1}^l c_k e_k$ is the expansion of the limit with respect to the L -proximal Fourier basis then the coefficients c_k are determined by the equations

$$
\sum_{k=1}^{i} \langle \mathbf{L} e_i, \mathbf{L} e_k \rangle c_k = \langle \mathbf{L} e_i, \mathbf{y} \rangle, \qquad \alpha_i < \alpha_i,
$$
\n
$$
d(l)c_l + \sum_{k=1}^{i} \langle \mathbf{L} e_i, \mathbf{L} e_k \rangle c_k = \langle \mathbf{L} e_i, \mathbf{y} \rangle, \qquad \alpha_j = \alpha_l.
$$

PROOF. As in Theorem 2.19 of [3] the $\lim_{m\to\infty} S_{\lambda_m,m}y$ exists, for all y, if and only if the given limits of $\lambda_m \alpha_i^m$ exist in $[0, \infty]$ as a result of 3.4, 3.8 and 3.13. The fact that the limit is in T^* and the equations for the coefficients, c_k , of the limit follow as in the cited Theorem by passing to the limit in the equations of 3.10, when those with index j, $\alpha_j > \alpha_l$ (i.e. those for which $\lim_{m \to \infty} \alpha_j^m \lambda_m = \infty$) are divided by $\alpha_j^m \lambda_m$.

REMARK. Note that when $\lambda_m = 0$ for all m, or, more generally, when $d(l) = 0$, $l = n$, then the equations for the c_k simply say $(g_*, e_j)_k = (y, e_j)_k$. These determine g_x as the (proximal) L-interpolant to y from T_n^* . When $d(l) = 0, l < n$, then these equations are the usual normal equations for the L -least squares best fit to y from the D-polynomials, T_i .

REFERENCES

1. A. S. Cavaretta, Jr. and D. J. Newman, *Periodic interpolating splines and their limits,* Indag. Math. 40 (1978), 515-526.

2. M. von Golitschek, *On the convergence of interpolating periodic spline functions of high degree*, Numer. Math. 19 (1972), 146-154.

3. D. L. Ragozin, *Limits of periodic smoothing splines,* Indag. Math., to appear, 1983.

4. 1. J. Schoenberg, *Notes on spline functions L The limits of the interpolating periodic spline functions as their degree tends to infinity,* Indag. Math. 34 (1972), 412-422.

5. G. Wahba, *Spline interpolation and smoothing on the sphere,* SIAM J. Sci. Stat. Comput. 2 (1981), 5-16.